PI
吴时敏 长聘教授
上海市闵行区东川路800号上海交通大学 bat365手机app下载食品系A楼2区211室 wushimin@sjtu.edu.cn 021-34205717
吴时敏,德国自然科学博士(Dr. rer. nat.),现任上海交通大学长聘教授、博士生导师,脂质、油脂与香味研究团队长(PI);兼任联合国粮食与农业组织(FAO)和世界卫生组织(WHO)食品添加剂联合专家委员会委员、全国稻米油产业技术创新联盟副理事长。 先后获授德国DAAD奖、上海交通大学首届SMC-晨星学者奖、国际Eni奖提名、德国汉诺威大学Certificate of Appreciation、美国化学会ACS Membership Award、全国优秀粮油科技工作者等。学术兼职多个专业期刊编委、行业或学会常务委员/理事,以及国内外多个基金奖励等审评专家;培训国内多个省市干部或企业高层数千人次。 长期致力于食品质量与安全研究,以非极性或弱极性分子为主要研究对象,采用多维全链、多学科交叉和组学技术,研究其分析制取、加工贮藏、质量安全、功能营养、品质控制和高值化绿色综合利用。吴时敏教授连续主持完成国际国内公益基础研究(含NSFC多项)和国内外企业委托研发项目40多项,第一发明人申请专利21项,主要起草研究制定国家与行业标准3项,出版《功能性油脂》等中英文专著或教材7部,第一或唯一通讯在Trends in Food Science & Technology、Critical Reviews in Food Science and Nutrition、Current Opinion in Food Science、Food Chemistry、Food Control、Journal of Agricultural and Food Chemistry、Food & Function、Journal of Dairy Science等期刊发表学术论文120多篇。 吴时敏教授团队秉持“脂道香得”文化:既包含研究室主攻关键词“脂 & 香”,又谐音寓意“道远知骥 & 相得益彰”;指导毕业的学士、硕士、博士和博士后,均乐观积极、能力突出、视野广阔,不断涌现出上海交大优秀毕业生、优秀博士后、上海市优秀毕业生、国际杰青学者等。 欢迎认同“脂道香得”价值观的本科生、硕士生、博士生、博士后、青年学者加盟本研究室!热诚欢迎学术界、企业及研发机构,就共同感兴趣的议题,开展坦诚愉快之交流合作!邮件请发至wushimin@sjtu.edu.cn
研究内容
  • (1)食品质量与安全
  • (2)油脂、脂质和油料
  • (3)食药兼用脂溶性分子(天然抗氧化剂、风味、香辛料、精油和色素)
承担项目
  • 主持国家自然科学基金 (No. 32472378))
  • 主持国家自然科学基金-两岸项目(No. 32061160476)
  • 主持国家自然科学基金 (No. 31972036)
  • 主持国家自然科学基金(No. 31671958)
  • 主持国家自然科学基金(No. 31471668)
  • 参与国家自然科学基金(No. 21477075,排2)
  • 主持国家自然科学基金(No. 31171704)
论文
  • [1] Wu SM*, Mou BL, Liu GY, Liu RJ, Wang XG (2025). Contamination, risk assessment, and reduction strategies for hazardous polycyclic aromatic hydrocarbons in foods. Current Opinion in Food Science, 62: 101270. https://doi.org/10.1016/j.cofs.2024.101270
  • [2] Ma X, Wu SM* (2025). Transformation of polycyclic aromatic hydrocarbons during frying stinky tofu. Food Chemistry, 471: 142795. https://doi.org/10.1016/j.foodchem.2025.142795
  • [3] Wang JY, Mou BL, Wu SM* (2025). Reduction of polycyclic aromatic hydrocarbon (PAH) toxicity risks in crude rice bran oil during storage using membrane filtration. Food Control, 172: 111186. https://doi.org/10.1016/j.foodcont.2025.111186
  • [4] Rao D, Wu SM* (2025). Food oxylipins: Formation, distribution, analysis and implications for health. Trends in Food Science & Technology, 159: 104968. https://doi.org/10.1016/j.tifs.2025.104968
  • [5] Lan JQ, Wu SM*, Li H, Wang JF, Li M (2025). Postbiotics in Respiratory Health: Functional components, innovative application, and emerging challenges. Journal of Nutrition, 2025, 155(11): 3676−3692, ttps://doi.org/10.1016/j.tjnut.2025.09.009
  • [6] Mou BL, Wu SM* (2025). Investigation on the interaction mechanism of phospholipids with polycyclic aromatic hydrocarbons and their derivatives during oil degumming process. Food Chemistry, 495(2): 146495. https://doi.org/10.1016/j.foodchem.2025.146495
  • [7] Rao D, Wu SM* (2025). Untargeted lipidomics and targeted mass spectrometry unravel lipid profiles and PAH/OPAH compositions in supercritical CO₂-extracted and cold-pressed Brazil nut oils. Food Chemistry, 492:145625. https://doi.org/10.1016/j.foodchem.2025.145625
  • [8] Ma X, Wu SM* (2025). Role of phenylalanine in the formation of parent and oxygenated polycyclic aromatic hydrocarbons in baking systems. Journal of Agricultural and Food Chemistry, 73(30): 19013−19025. https://doi.org/10.1021/acs.jafc.5c04295
  • [9] Li W, Wu SM*, Zhang WM (2024). Insights into the formation of chlorinated polycyclic aromatic hydrocarbon related to chlorine in salt-tolerant rice: Profiles in market samples, effects of saline cultivation and household cooking. Journal of Agricultural and Food Chemistry, 72(44): 24833−24846. https://doi.org/10.1021/acs.jafc.4c06295
  • [10] Mou BL, Wu SM* (2024). Interactions between polycyclic aromatic hydrocarbons (PAHs) and phospholipids cause PAH migration into wet gums during the oil degumming process. Food Chemistry, 464:141578. https://doi.org/10.1016/j.foodchem.2024.141578
  • [11] Ma X, Wang JY, Wu SM* (2024). Effective isolation and comprehensive quantification of EPA16 PAHs, EU15+1 PAHs, 17 halogenated PAHs, and 18 oxygenated PAHs in soybean oil. Food Control, 164: 110605. https://doi.org/10.1016/j.foodcont.2024.110605
  • [12 Li W, Wu SM* (2024). Halogenated polycyclic aromatic hydrocarbons in Chinese traditional sausages with high salt: profiles in market samples and formation during home cooking. Food Chemistry, 430: 136929. https://doi.org/10.1016/j.foodchem.2023.136929
  • [13] Ma X, Wu SM* (2024). Oxygenated polycyclic aromatic hydrocarbons in food: toxicity, occurrence and potential sources. Critical Reviews in Food Science and Nutrition, 64(15): 4882− 4903. https://doi.org/10.1080/10408398.2022.2146652
  • [14] Li W, Wu SM* (2023). Challenges of halogenated polycyclic aromatic hydrocarbons in foods: Occurrence, risk, and formation. Trends in Food Science & Technology, 131:1−13. https://doi.org/10.1016/j.tifs.2022.11.015
  • [15] Ge YX, Wu SM* (2023), Yan K. Concentrations, influencing factors, risk assessment methods, health hazards and analyses of polycyclic aromatic hydrocarbons in dairies: a review. Critical Reviews in Food Science and Nutrition, 63(23): 6168−6181. https://doi.org/10.1080/10408398.2022.2028717
  • [16] Yan K, Li W, Wu SM* (2022). Dietary exposure and risk assessment of EU priority polycyclic aromatic hydrocarbons from milks and milk powders. Journal of Dairy Science, 105(8): 6536−6547. https://doi.org/10.3168/jds.2021-21438
  • [17] Zhang LM, Wu SM* (2022). Time-saving and accurate analysis of BaP, BaA, Chr and BbF in milks and oils by three-way fluorescence spectrometry. Food Chemistry, 381:132309. https://doi.org/10.1016/j.foodchem.2022.132309
  • [18] Li W, Wu SM* (2022) Halogenated polycyclic aromatic hydrocarbons and their parent compounds in ready-to-eat seafood rich in salt: Method validation, profiles, correlation, and exposure risks. Food Control, 136: 108864. https://doi.org/10.1016/j.foodcont.2022.108864
  • [19] Yousuf B, Sun YQ, Wu SM* (2022). Lipid and lipid-containing composite edible coatings and films. Food Reviews International, 38: 574−597. https://doi.org/10.1080/87559129.2021.1876084
  • [20] Zhang LM, Wu SM*, Jin XY (2021). Fatty acid stable carbon isotope ratios combined with oxidation kinetics for characterization and authentication of walnut oils. Journal of Agricultural and Food Chemistry, 69(23): 6701−6709. https://doi.org/10.1021/acs.jafc.1c01843
  • [21] Yan K, Wu SM*, Gong GY, Xin L, Ge YX (2021). Simultaneous determination of typical chlorinated, oxygenated and EU priority PAHs in milks and milk powders. Journal of Agricultural and Food Chemistry, 69(13): 3923–3931. https://doi.org/10.1021/acs.jafc.1c00283
  • [22 Yousuf B, Wu SM*, Siddiqui MW (2021). Incorporating essential oils or compounds derived thereof into edible coatings: Effect on quality and shelf life of fresh/fresh-cut produce. Trends in Food Science & Technology, 108: 245–257. https://doi.org/10.1016/j.tifs.2021.01.016
  • [23] Yousuf B, Wu SM*, Gao Y (2021). Characteristics of Karaya gum based films: Amelioration by inclusion of Schisandra Chinesis oil and its oleogel in the film formulation. Food Chemistry, 345:128859. https://doi.org/10.1016/j.foodchem.2020.128859
  • [24] Gao Y, Wu SM* (2020). Development and evaluation of a novel oleogel system based on starch-water-wax-oil. Food & Function, 11: 7727–7735. https://doi.org/10.1039/D0FO01785J
  • [25] Sun YQ, Yan K, Wu SM*, Gong GY (2020). Occurrence, spatial distribution and impact factors of 16 polycyclic aromatic hydrocarbons in milks from nine countries. Food Control, 113: 107197. https://doi.org/10.1016/j.foodcont.2020.107197
  • [26] Yan K, Wu SM*, Gong GY, Sun YQ (2020). A new approach of specific determination for 6-chlorobenzo[a]pyrene and 7-chlorobenzo[a]anthracene in six different oils. Food Chemistry, 316: 126344. https://doi.org/10.1016/j.foodchem.2020.126344
  • [27] Sun YQ, Wu SM* (2020). Analysis of PAHs in oily systems using modified QuEChERS with EMRLipid clean-up followed by GC-QqQ-MS. Food Control, 109: 106950. https://doi.org/10.1016/j.foodcont.2019.106950
  • [28] Gao Y, Wu SM* (2019). Thermal and oxidation stability of functional oleogels formed by edible wax/starch and Schisandra chinensis oil. Food & Function, 10: 8056–8068. https://doi.org/10.1039/C9FO01727E
  • [29] Teng C, Wu SM*, Gong GY (2019). Bio-removal of phenanthrene, 9-fluorenone and anthracene-9,10-dione by laccase from Aspergillus niger in waste cooking oils. Food Control, 105: 219–225. https://doi.org/10.1016/j.foodcont.2019.06.015
  • [30] Sun YQ, Wu SM*, Gong GY (2019). Trends of research on PAHs in food: A review and bibliometric analysis from 1997 to 2017. Trends in Food Science & Technology, 83: 86–98. https://doi.org/10.1016/j.tifs.2018.11.015
专利著作
  • [1] 吴时敏主编 (马欣, 张立敏, 高媛参编). 食品分析与检验实验教程[M].
  • [2] Wu SM*, Gong GY, Yan K, Sun YQ, Zhang LM (2020). Polycyclic aromatic hydrocarbons in edible oils and fatty foods: Occurrence, formation, analysis, change and control. Advances in Food and Nutrition Research, 93: 59-112.
  • [3] 杨月欣, 葛可佑主编(吴时敏等参编). 中国营养科学全书 [M].
顶部 手机bat365官网
Baidu
sogou